

KDI Precision Products, Inc. An ISO 9001 Registered Company

IMPROVED ARTILLERY PROXIMITY FUZE

44th Annual Fuze Conference & Munitions Technology Symposium VII

Presented By:

Bob Hertlein, Dave Lawson

KDI Precision Products, Inc.

Telly Manolatos

Electronics Development Corp

Presentation Outline

- > Need for Improved Artillery Proximity Fuze
- Design Goals
- Design Approach
 - **♦ RF front end**
 - **♦ Signal processor**
 - **♦** Battery
 - ♦ S&A
- > Future design enhancements

Need for Improved Artillery **Proximity Fuze**

- MK417/418 has history of problems
 - **♦ Early bursts**
 - **♦ Duds**
 - **♦ Poor HOB control**
 - **♦ Not production-friendly**
 - **♦ Obsolete parts**
- No low-cost alternatives capable of both air and ground targets

Design Goals

- > Capable of air and ground targets
- Operation independent of round (not body-excited)
- > NATO shape factor
- > Surface mount technology
- > Low cost
- Impact back-up mode

Design Approach

- > RF front end
- > DDR signal processor
- > MK41 S&A
- > German Battery

RF Front End

- > Optimized for air targets
 - **♦ Low noise discrete oscillator**
 - ♦ Monopole antenna for good side coverage
- Will work well with ground targets
 - ♦ Low-angle approaches benefit from side coverage
 - enhanced sensitivity overcomes front-end null in high-angle approaches

DDR Overview

- Based on FM-CW architecture
- Correlation waveforms stored in memory
- Accurate HOB independent of target reflectivity
- Highly resistant to ECM
- > Completely integrated for reliability, low cost
- DDR currently fielded in the highly successful M734A1 Multi-option Fuze for Mortars

Block Diagram of KDI ASIC EDC

Summary of Key ASIC Features

- Programmable reference waveforms
 - **♦ Allows tailoring of target-specific range responses**
 - ♦ Downloaded from µP (can be changed during flight)
- > Low noise for use in air target applications
- Low Power
- Selectable wide band filters
 - ♦ Can process wide range of Doppler frequencies
- Multiple ASICS can be synchronized
 - **♦ Allows implementation of more complex fuzing algorithms**

S&A

- > MK41 is a qualified design
- > Low cost
- > Performance parameters:

♦ Setback g level: 26,000 g

♦ Spin rate: 410 rps

♦ Velocity: 3075 ft/sec

Battery

- German made (Friemann & Wolf)
- Chemistry: Pb/HBF4/PbO2
- Proven design for artillery
- Performance parameters:

♦ Operational life: 150 seconds

♦ Current:
150 mA max

♦ End of life voltage: 5.5 Volts min

♦ Rise time:
100 mSec max

♦ Required setback: 1200 g's min

♦ Required spin: 2500 rpm min

♦ Operating temperature: -45F to +145F

Photos of Old Vs. New Design

New Design:

Old Design:

Photo of Battery and S&A DDC

Computer Plot of Cutaway

Future Design Enhancements

- ASIC flexibility provides adaptability to a wide variety of systems
- Possible enhancements include inductive-set programmable time capabilities